Source code for pymordemos.elliptic_unstructured

#!/usr/bin/env python
# This file is part of the pyMOR project (
# Copyright 2013-2019 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (

"""Simple demonstration of solving the Poisson equation in 2D on a circular sector
domain of radius 1 using an unstructured mesh.

Note that Gmsh ( is required for meshing.


    ANGLE        The angle of the circular sector.
    NUM_POINTS   The number of points that form the arc of the circular sector.
    CLSCALE      Mesh element size scaling factor.

    -h, --help   Show this message.

from docopt import docopt
import numpy as np

from pymor.analyticalproblems.elliptic import StationaryProblem
from import discretize_stationary_cg
from pymor.domaindescriptions.polygonal import CircularSectorDomain
from pymor.functions.basic import ConstantFunction, ExpressionFunction

[docs]def elliptic_gmsh_demo(args): args['ANGLE'] = float(args['ANGLE']) args['NUM_POINTS'] = int(args['NUM_POINTS']) args['CLSCALE'] = float(args['CLSCALE']) problem = StationaryProblem( domain=CircularSectorDomain(args['ANGLE'], radius=1, num_points=args['NUM_POINTS']), diffusion=ConstantFunction(1, dim_domain=2), rhs=ConstantFunction(np.array(0.), dim_domain=2, name='rhs'), dirichlet_data=ExpressionFunction('sin(polar(x)[1] * pi/angle)', 2, (), {}, {'angle': args['ANGLE']}, name='dirichlet') ) print('Discretize ...') m, data = discretize_stationary_cg(analytical_problem=problem, diameter=args['CLSCALE']) grid = data['grid'] print(grid) print() print('Solve ...') U = m.solve() solution = ExpressionFunction('(lambda r, phi: r**(pi/angle) * sin(phi * pi/angle))(*polar(x))', 2, (), {}, {'angle': args['ANGLE']}) U_ref = m.visualize((U, U_ref, U-U_ref), legend=('Solution', 'Analytical solution (circular boundary)', 'Error'), separate_colorbars=True)
if __name__ == '__main__': args = docopt(__doc__) elliptic_gmsh_demo(args)